
 
Abstract— This paper descr ibes the software 
architecture of Dragon, a real-time  situational 
awareness vir tual environment for  battlefield 
visualization. Dragon receives data from a number 
of different sources and creates a single, coherent, 
and consistent three-dimensional display. We 
descr ibe the problem of Battlefield Visualization 
and the challenges it imposes.  We discuss the 
Dragon architecture, the rational for  its design, and 
its performance in an actual application. The 
battlefield VR system is also suitable for  similar  
civilian domains such as large-scale disaster relief 
and hostage rescue. 
 
Index terms—distr ibuted VR; command and 
control; software architecture; interactive 
visualization. 

I. INTRODUCTION 

Gaining a detailed understanding of the modern battle 
space is vital to the success of any military operation, 
both in terms of achieving objectives and minimizing 
civilian and military casualties. This understanding, 
also known as situation awareness, is used by Combat 
Operations Centers (COCs) in the complex task of 
directing the movement of assets and material over 
rugged terrain, day and night, in uncertain weather 
conditions, while taking account of possible enemy 
locations and activities. Most COCs receive vast 
amounts of data from many different systems and 
sources such as eyewitness reports, aerial and satellite 
photography, and a multitude of sensors such as sonar, 
radar, seismic, and infrared.  Despite the availability of 
state-of-the-art sensors and data fusion technology, 
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many command and control decisions typically use 2D 
displays and, for advanced planning, these are 
sometimes just paper maps with acetate overlays.  
Creating detailed maps and overlays is labor intensive 
and can take several hours to print and distribute. 
Given the rapid growth in available information and 
the increased tempo of warfare [Cebrowski-98], these 
methods no longer meet the needs of the Navy and 
Marine Corps. 

The Virtual Reality Laboratory at the Naval Research 
Laboratory was one of the pioneers of the Responsive 
Workbench, having fabricated the first U.S. version in 
1994 [Rosenblum et al., 1995] with applications in 
medicine and engineering design [Rosenblum et al., 
1996]. More recently our thrust has been in developing 
Dragon for situational awareness on the Workbench 
and interoperably across platforms with differing 
display and interaction capabilities. Dragon is a 
prototype software platform for developing and 
investigating methods for visualizing and interacting 
with battlefield information in COCs. 

Battlefield visualization is a special case of a planning 
task where a user must plan and coordinate multiple 
units within a complex and ever changing environment. 
It has a number of specialized needs (described in 
Section II) which impact both the software architecture 
and user interface design. We were unable to find a 
single system that could meet our requirements and it 
was necessary to develop a custom solution. This 
paper describes the development of this architecture 
and how it was tailored to meet our requirements. A 
companion paper describes the development and 
verification of the user interface through formative and 
summative user evaluations [Hix-99].  

The structure of this paper is as follows. In Section II 
we describe the problem of battlefield visualization and 
outline the history of the Dragon system. The software 
architecture is described in Section III. The application 
of the Dragon system to a mine-clearing operational 
simulation is described in Section IV. The summary 
and conclusions are presented in Section V. 
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II. PROBLEM STATEMENT 

The NRL’s Virtual Reality Laboratory was 
approached in 1996 by the Marine Corps Warfighting 
Laboratory to develop a prototype visualization system 
for the Hunter Warrior Advanced Warfighting 
Experiment (AWE). Hunter Warrior was the first in a 
series of experiments to explore technology and its role 
in supporting the Marines in the 21st century 
[Rosenblum et al., 1997]. 

The requirements for a battlespace visualization system 
include: 

1. Interface to all of the appropriate military situation 
awareness, planning, and simulation systems. 
Each data source has its own characteristics, 
such as the types of data it provides, the queries 
that can be made, the protocols involved, and the 
update rates. The limitations and benefits of each 
type of data source must be preserved. 

2. Display urban terrain, manmade objects, and 
objects and terrain under foliage. 

3. Present a comprehensive and timely view of the 
environment. This includes displaying extremely 
large, high-resolution maps of the terrain and 
extremely large numbers of moving entities (on 
the order of hundreds or thousands). 

4. Provide a dynamic range of resolution sufficient 
to track units ranging from aircraft carriers to 
individuals. 

5. Visualize potential enemy and friendly courses of 
actions and neutral activity.  

6. Support information filtering. It must be possible 
to display a selected subset of available 
information using appropriate display techniques. 

7. Prioritize events and issue alarms. 

8. Deliver information on demand. It should be 
possible to obtain any known information about a 
particular entity such as its fuel level or alert 
status. 

9. Represent battlefield uncertainty. For example, 
certain data fusion procedures might be unable to 
unambiguously classify the identity of an entity.  

10. Support multi-user collaboration. 

11. Support multiple computer hardware 
configurations, ranging from low-end PCs to high-
end Silicon Graphics (SGI) workstations. 

12. Support multiple types of display devices, ranging 
from desktop displays to CAVE™-like devices. 

These requirements are summarized in Figure 1, which 
shows a top-level architectural diagram of the Dragon 
system. There are three main issues: interaction 
devices, display platforms, and information sources. 
Information is received from many different types and 

kinds of disparate data sources including battlespace 
monitoring systems and this information must be fused  
into a single, consistent view of the environment. The 
user can view these data on one of a number of 
platforms and interact with it via many different types 
of input devices. 

 

Figure 1: Role of the Architecture 

At first sight, it appears that this architecture is very 
conventional and the visualization problems can be 
addressed by systems that have already been described 
in the literature. DIVE [Hagsand-96], for example, is a 
mature, multi-platform, multi-user collaborative VR 
system which can be extended by interpreted scripts 
(tcl/tk) or used as a library which could be linked to a 
custom application. Similarly, the Virtual Life 
Network [Padzic-97] has a set of “engines” which 
control aspects of the virtual environment such as 
object behavior or navigation. Each engine can be 
driven by an external interface through network 
connections. In theory, these engines could be driven 
directly from the interaction managers and external 
interfaces. 

However, most existing VR systems and collaborative 
virtual environments [Churchill-98] are designed to 
support architectural features such as rooms, objects, 
and avatars as opposed to terrain, military vehicles, 
and planning symbology which are required to 
visualize the modern battlefield environment. For this 
reason, we developed our own architecture and 
software system. 

To gain an appreciation of the application domain, 
Figure 2 shows the output from the Dragon system for 
the Hunter Warrior AWE [Durbin-98]. The 
environment consists of a terrain that is populated by a 
set of entities. The terrain must be an accurate 
representation of the physical conditions of the 
appropriate scenario. The geometry for the terrain is 



extracted from high-resolution digital terrain elevation 
data (DTED) and it is textured with an accurate, high-
resolution map. Each entity represents a report from an 
external data system and can represent discrete military 
units or various types of planning symbology such as 
named areas of interest.  

 

Figure 2: Output from the Dragon System 

III. ARCHITECTURE DESCRIPTION 

The Dragon system, like many other complex modern 
software systems, is designed as a set of tightly 
coupled software modules. The current design, which 
is illustrated in Figure 3, consists of two major 
subsystems: the Generic Entity Manager (GEM) and 
the Rendering Engine (RE). GEM is responsible for 
collecting data from external data sources and 
expressing them in a common, standard representation. 
The RE is responsible for all user interaction; it draws 
the virtual environment, processes user input, and 
creates a set of requests and events that are directed 
back to GEM. The two subsystems interact by means 
of a pair of unidirectional event queues (that specifies 
the types of state changes that have occurred) and a 
shared entity database (that specifies the actual entity 
state information). 

This design has a number of advantages. First, the 
clear separation of the entity manager from the 
renderer allows the two subsystems to operate 
asynchronously. The GEM is largely driven by the rate 
at which the external interfaces provide data. As will 
be described below, some of these systems provide 
many events per second whereas others provide data 
infrequently. The RE operates independently of these 
data rates, attempting to maintain constant and 
interactive frame rates (>10Hz stereo). 

Second, the clear separation of the GEM and RE 
modules isolates possible interdependencies.  All 
interactions between the two subsystems are 
accomplished via a clearly defined API and a strictly 
defined shared entity database. This means that 
different versions of the RE can be used with a given 
version of the GEM.  For example, our current 
Rendering Engine (as discussed in Section III.C) is 
based on the IRIS Performer software libraries. 
However, any rendering system that conforms to the 
GEM-RE communications system (described in 
Section III.B) could be used.  

Finally, this architecture encourages code reuse. 
Components of the RE have been transitioned to a 
parallel scientific visualization project [Kuo-99]. 
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Figure 3: The Software Architecture 

The following subsections describe the GEM, the RE, 
and the inter-module communication system. 

A. Generic Entity Manager (GEM).   

The GEM has two main components: an entity 
database, which stores information on all current 
entities in the environment, and a set of external 
systems interfaces. Each entity is created and 
controlled by an appropriate external systems interface. 
All entities are sub-classed from the same basic entity 
definition. To date we have implemented four 
interfaces: a persistent data store (or static data 
system), a Distributed Interactive Simulation (DIS) 
interface, a Joint Maritime Command Information 
System (NBIS) interface, and a remote GEM interface 
for multi-user collaboration. 

1) Entity Definition 
Each identifiable component of the environment, 
whether it is a solid object, such as a tank, or an 
abstract logical relationship, such as a named area of 
interest, is described as a type of entity. The entity 
definition must be sufficiently broad to describe all of 



the types of entities that the Dragon system will 
present. For a general environment this is a formidable 
task. Fortunately, the Department of Defense has 
addressed this need in the development of databases 
and communications systems. 

Probably one of the best-known and most applicable 
classifications is that provided by DIS. DIS 
exhaustively enumerates most types and kinds of 
military assets encountered in a battlefield1. Recently, 
DIS has been superseded by the High-Level 
Architecture (HLA). HLA exploits recent 
developments in object oriented programming to 
provide a general, scalable and flexible framework for 
software development [DMSO-97]. 

At the time that we began the development of Dragon, 
a mature implementation of HLA was not available. 
Therefore, our entity description is a simplification of 
the HLA Federated Object Model incorporating the 
classification scheme from DIS.  Specifically, the fields 
used in Dragon for each entity are listed in Table 1 
below. 

Identification 
 Source 

ID 
Type 

Graphical representation 
 Model name and scale 
 Appearance 
 Label 
Location 
Attribute List 
Ownership and Permissions  

Table 1: Components of an entity 
 

The meaning of each field is as follows: 

• Identification. The Dragon system requires that 
each entity have a unique identity.  An entity’s 
identification consists of its source, its ID and its 
type. The source specifies the external data system 
providing the entity. The ID is the identification 
tag provided by the source system.  Since different 
systems use different naming and labeling 
practices, GEM does not impose any kind of 
structure on this field. The type is the DIS 
enumeration describing the entity. It consists of six 
fields  (kind, domain, nationality, category, 
subcategory and specific.) which together 
completely define the nationality, role and type of 
each entity. For example, kind=1, domain=1, 
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nationality=225, category=1, subcategory=9, 
specific=1 is a prototype US AAI Rapid 
Deployment Force Light Tank Combined Arms 
Team/Lightweight Combat Vehicle. 

• Graphical Representation. The graphical 
representation determines how a particular entity 
will be displayed to the user. The first field 
specifies the model name (typically its file name) 
and the scaling to be applied to the model after it 
has been loaded. Typically, the entity type 
determines its representation. A look up-table, 
defined by a configuration file, maps each entity 
type to a particular model name and scale. An 
entity model can contain a number of 
representations each reflecting a different entity 
state. For example, different models are used to 
represent an entity that is healthy, damaged, or 
destroyed. The appearance field determines the 
state to be shown. The label is an optional text 
label that can be attached to an entity. 
Supplemental information contains miscellaneous 
data, such as comments placed by a battlefield 
observer. 

• Location. This specifies the position and 
orientation of the entity. Surprisingly enough, this 
is one of the most complicated parts of the entity 
definition. There are two reasons for this difficulty. 
First, although the Earth is extremely large it is not 
flat. On the scale of many battlefields – typically 
tens of kilometers on a side, the slight curvature of 
the Earth is just sufficient to introduce subtle but 
appreciable errors. The second problem is that 
there are literally dozens of different coordinate 
systems that can be used to describe the location of 
an entity. The coordinate systems we have 
implemented include geodetic (longitude and 
latitude to six or seven decimal places), Cartesian 
(earth-centered earth-fixed inertial) and the 
Universal Transverse Mercator. These different 
coordinate systems are converted to a Cartesian 
coordinate system. Even so, offsets must be 
applied to avoid truncation and rounding errors2. 

• Attribute List. Each entity can have a list of 
attributes attached to it. Each attribute is a data 
type, such as an integer or a string, that 
encapsulates an operational attribute of the entity. 
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For example, the attribute might contain the fuel 
level of an aircraft. 

• Ownership and Permissions. GEM provides a 
mechanism of supporting the policies of its 
external systems through the notion of ownership 
and permissions. This mechanism is drawn from 
the models used in DIVE [Hagsand-96], SPLINE 
[Waters-97], the MR Toolkit [Wang-95], and 
HLA [DMSO-97]. Each entity is owned by the 
external system that created it. Associated with 
each entity are a set of actions (such as delete, 
query or move) that are moderated by a set of 
access control lists and permissions. For example, 
a simulation system might not let a user, under 
normal circumstances, pick up and move an entity. 
However, during a set up phase when a scenario is 
created, the simulation system might grant the user 
entity movement capabilities. 

 

The next subsections describe some of the external 
data systems and how the data is converted to the 
general entity format. 

2) Static 
The static data store is the simplest and one of the most 
useful data interfaces. Its name refers to the fact that it 
is a link to a static or persistent database. It offers the 
capability of storing a “snap shot”  of the scenario at a 
particular moment in time that can then be loaded at a 
later date. The entities created by this system are not 
controlled or regulated by an external system, and can 
be used in the collaborative interface described later. 

3) DIS  
The DIS interface was developed to allow GEM to 
participate in Modular Semi-Automated Forces 
(ModSAF) simulation exercises as a “stealth viewer”  – 
a device that can be used to explore and examine a 
virtual environment but cannot make any changes. 

ModSAF is a multi-host virtual environment system 
for planning and shaping military activities 
[Courtmanche-95]. Using the DIS protocol mechanism, 
ModSAF contains models of the capabilities and 
behaviors of many different kinds and types of military 
assets. The Navy, the Army, and the Airforce use it 
extensively in their simulation systems. 

To successfully interface with this system, GEM’s 
external interface had to act, as far as the simulation 
was concerned, as if it were another participant within 
the simulation. This was achieved by incorporating the 
vrLink libraries from MÄK Technologies. vrLink is an 
interface library that interprets each simulation data 

packet, builds a table of entities that currently exist in 
the simulation, and provides other simulation specific 
operations such as dead reckoning. 

Since the connection was passive, the DIS system 
owned and controlled all of the entities. Users were 
able to select and query these objects, but they could 
not move them or change their state. 

Due to its occasionally high data rates, DIS placed a 
number of demands on the design of Dragon. For 
example, whenever the interface to a running 
simulation is first opened, Dragon must create, within 
a matter of seconds, all of the entities populating the 
virtual environment. To maintain interactive rates 
despite this large number of events, asynchronous 
model loading schemes had to be developed. This is 
described in more detail in Section III.C. 

4) Network Battlefield Information System (NBIS) 
The Joint Maritime Command Information System 
(NBIS) is a widely used automated information system 
designed to support mission planning. It is composed 
of several mission applications integrated into a 
common XWindows-like operating environment and 
networked to support the sharing of raw sensor data, 
tracked information, and other types of databases. For 
Dragon we were interested in monitoring and 
displaying track information. Each track corresponds 
to a confirmed entity or object in the environment.  
Although NBIS uses its own methods for labeling and 
classifying tracks, we were able to make a one-to-one 
mapping from the NBIS to the DIS classification 
schemes by via a look-up table in a configuration file. 

Unlike ModSAF, which is computer generated and is a 
constant stream of data packets, NBIS data arises from 
sensor and tracking systems as well as eyewitness 
reports. The data arrives infrequently and 
unpredictably (on the order of seconds to minutes 
between each data packet) and can contain ambiguities. 
For example, in the Hunter Warrior AWE, a great deal 
of NBIS data was provided by the Leatherneck system 
– a set of Marine observers equipped with an Apple 
Newton, a GPS receiver, and an Erickson radio who 
keyed their observations directly into the system. These 
observations were automatically routed and entered 
into NBIS. Messages could be incorrectly formatted or 
ambiguous.  For example, a number of different 
observers viewing the same object could classify it as a 
different type of military entity or report a grossly 
different location.  

In the Hunter Warrior AWE, the classification errors 
were predominantly and consistently of the 



misidentification and incorrect localization variety.  
We compensated for the misidentification by adjusting 
the NBIS to DIS mapping.  

In general a visualization system like Dragon should 
not automatically correct for ambiguous or erroneous 
data as this might introduce false or misleading 
information. Rather, the system should inform the user 
that the potential for incorrect data is present and let 
the user decide the appropriate course of action. 

5) GEM to GEM 
Planning is an inherently collaborative activity and we 
developed a GEM to GEM interface to permit simple 
multi-user collaboration. The collaborative system was 
implemented using CAVERN as the transport layer 
[Leigh-97]. The collaboration system allows an 
arbitrary number of GEMs to be inter-connected. 

Working on the assumption that collaborating GEMs 
will be connected to the same set of external systems, 
the collaborative interface is responsible for 
propagating a subset of entities that can be shared. 

Furthermore, we have only implemented a subset of the 
full permissions-ownership capabilities. Currently, an 
entity can be owned by only one user who has 
permission to carry out all operations (This is not 
unlike the systems used in DIVE [Hagsand-96] and 
SPLINE [Waters-97]). 

Initially, all shareable entities are not owned. To own 
an entity, a user selects it. When the entity becomes 
selected, this information is propagated to all other 
collaborating users who see the graphical 
representation of the entity (such as the color of a 
naming label) change to indicate that the entity is now 
owned by a particular user. The owner is now able to 
move or delete the entity. The entity’s movements are 
reflected on the remote machines. Finally, the user 
deselects the object, thereby releasing ownership rights 
to it. 

When GEM A wishes to collaborate with GEM B, A 
first requests permission to open a connection with B. 
Once the connection has been opened, both GEMS 
synchronize their local entity databases – GEM A 
receives a copy of GEM B’s shareable entities and 
vice-versa. All subsequent collaborative interactions 
occur whenever a shareable entity is created, deleted, 
or changed. The state change is converted to an event 
message and state change data propagated on an as-
needed basis. In our prototype scenario, we were 
networking only a very small number of GEMS (2-3) 
with very limited collaborative interaction (typically 
only 1-2 entities were manipulated at a time, generating 

at most 20 messages per second). Therefore, it was 
convenient to use the same format for expressing state 
changes as the static file format. 

B. GEM-RE Communication 

The GEM-RE communications subsystem provides the 
mechanism for transferring entity data to and from the 
RE. The state changes to the RE arise from the 
interactions of all of the external systems. The state 
changes from the RE consist of user initiated changes 
such as relocating an entity. For the types of systems 
we were dealing with, the greatest volume of data 
would flow from GEM to the RE. Furthermore, we 
could not afford to have either system sit and wait until 
it could acquire data from its counterpart. 

The communications subsystem consists of three main 
parts: a GEM to RE event queue, a RE to GEM event 
queue, and a shared data pool. The interface uses a 
simple ownership toggling policy to coordinate 
interaction. First, GEM is granted ownership of the 
GEM-RE communications subsystem. Second, all of 
the events from the RE are processed, causing changes 
to occur in GEM’s stored entity database. Each entry 
in the event queue specifies an entity and the type of 
interaction, such as move or delete. The data for the 
interaction is stored within the shared data pool. Third, 
all of the different external system interfaces are 
queried and all entity state changes since the last time 
step are calculated. These state changes are used to 
build the event queue to pass a list of instructions to 
the RE. Fourth, state change information on shareable 
objects is propagated out to the remote hosts. Finally, 
GEM grants the RE ownership of the communications 
system. The RE follows a similar pattern of operation, 
updating the state of all entities specified in the event 
queue. User invoked changes are placed into the RE to 
GEM event queue and the RE switches ownership back 
to GEM. 

C. The Rendering Engine 

The Rendering Engine (RE) is responsible for 
implementing the user interface and it performs two 
important roles – it manages the graphical display and 
processes the user inputs. The requirements for the RE 
are much more conventional than the GEM and, as 
such, there are fewer novel developments. However, 
the battlefield visualization application leads to two 
important demands: it is reconfigurable (can be used 
with multiple display devices) and should support 
interactive frame rates (>10Hz stereo) when large and 
complicated environments are being viewed. 



1) Hardware Configurability 
The Dragon system must operate with different suites 
of interaction devices and display platforms. This 
problem is not uncommon for the VR community and a 
number of general-purpose graphics libraries have 
been developed. One of the most extensive is the 
CAVE Library which is a comprehensive set of 
graphics system configuration tools, input device 
drivers and simple networking capabilities [Pape-97]. 
However, its architecture is monolithic – all of its 
capabilities are bundled into a single library and it was 
not possible, for example, to extend, adapt or modify 
the set of device drivers. Given these difficulties we 
developed our own graphical library, the vrLib, which 
builds directly on top of SGI’s IRIS Performer 
libraries [Kuo-98]. 

The core of a vrLib-based program is an instance of a 
vrApp object that maintains all system configurations 
including the number and type of input devices as well 
as the configurations of the display screens. The 
abstract base class provides minimal functionality for 
loading and parsing configuration files. Subclasses of 
vrApp are responsible for interpreting the 
configuration commands and performing the actual 
graphics management. For example, the base class 
supports a parameterization of the viewing surface in 
terms of a user-specified number of windows with 
basic properties (such as size, pipe number and 
whether console input is enabled on a particular 
window). The concrete subclasses of vrApp interpret 
this information appropriately (for example, as the 
walls of a CAVE or a Workbench with ancillary 
displays). 

2) Graphics Management 
Roughly speaking, the dominant factor that influences 
the frame rate is the complexity of the scene (in terms 
of the number of triangles) that is being viewed by the 
user at any given time. Surprisingly enough, for our 
battlefield visualization applications the majority of the 
burden arises from the entities and not from the terrain. 
There are several reasons for this. First, the nature of 
our applications means that we only deal with compact 
and relatively “simple” environments at a single level 
of detail. With conventional polygon reduction 
algorithms, the terrain models typically use only about 
10,000 triangles. In environments which are not 
populated (no entities), extremely high frame rates 
(>24Hz stereo) have been obtained without the need to 
use any kind of specialized terrain visualization 
techniques. Second, although the geometric description 
of each entity is fairly simple (for example, the model 
of an M1A1 tank has approximately 500 triangles), 

their large number means that they account for a 
significant proportion of the total polygon count. 
Finally, significant delays can occur when large 
numbers of models must be loaded in a short period of 
time. For example, a typical scenario requires over 100 
different types of models. When Dragon is switched to 
a new scenario, it is possible that all of these models 
must be loaded in “one go” which can take on the order 
of ten seconds. 

To address these difficulties, we used a geometry 
library and an asynchronous model loading strategy. 
The geometry library stores, in a parallel scene graph, 
a copy of the geometry of each model that has been 
loaded so far. When the RE receives a request to create 
a new entity, it checks the geometry library to see if the 
relevant model has already been loaded. If the model is 
present, its geometry is cloned into the scenegraph. If 
the geometry has not been loaded, a load request is 
scheduled with the asynchronous model loader. This is 
a separate process that loads the model and inserts it 
into the geometry library. Empirical tests suggest that 
these techniques approximately halved the initialization 
time and doubled the frame rate. 

IV. APPLICATION 

A recent application of the Dragon was as a support 
visualization system for the Joint Countermine 
Operational Simulation component of the Joint Counter 
Mine Advanced Technology Demonstrator (JCM). The 
purpose of JCM was to measure the effectiveness of 
novel techniques for mine clearance in combat 
situations. Sets of simulated exercises were conducted 
at North Carolina and the Dragon system, through its 
DIS interface, was used as a viewer to aid in the 
analysis of the archived data. This application is of 
particular interest to the architecture because it is 
extremely complicated and involves a large number of 
independent entities (more than 220) of many different 
types (over 100 different models were used). These 
entities were in constant motion and events such as 
explosions and smoke had to be depicted. 

Throughout the exercise the system maintained a rate 
of at least 10 frames per second, thus meeting all of its 
requirements. 

V. SUMMARY AND CONCLUSIONS 

This paper has described the design of a software 
architecture for a real-time battlefield visualization 
system. Battlefield visualization has a number of 
unique requirements that directly impact the design of 
the architecture. For example, the need to interact with 



multiple disparate data systems lead to the 
development of the GEM and the RE. 

Although this design has successfully met its 
requirements, a number of shortcomings and areas for 
future research work have become apparent: 

1. Although the DIS classification scheme is 
extremely powerful, standardized, and general for 
describing military assets and entities, it is not 
capable of describing all types of environmental 
features that we might want to visualize, such as 
weather effects. Therefore, the entity classification 
system must be expanded. 

2. The notion of an external interface is extremely 
useful but limiting. Many types of higher order 
object behavior, such as dynamic systems or 
windows systems, will own objects with their own 
types and behaviors. Therefore, the external 
interface will be generalized to an “actor”  – any 
kind of object that can own and manipulate 
entities.  

3. The system architecture will be enhanced to 
provide greater scalability and extensibility. The 
concept of independent modules will be pursued 
aggressively. Using the framework from Bamboo 
[Watsen-98], Dragon will be decomposed into a 
large number of interacting modules that can be 
dynamically loaded and unloaded at run-time. This 
will give a highly reconfigurable system that can, 
for example, load and unload external interfaces on 
demand. 
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